Learning algebraic structures with the help of Borel equivalence relations
We study algorithmic learning of algebraic structures. In our framework, a learner receives larger and larger pieces of an arbitrary copy of a computable structure and, at each stage, is required to output a conjecture about the isomorphism type of such a structure. The learning is successful if the...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2023-03, Vol.951, p.113762, Article 113762 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study algorithmic learning of algebraic structures. In our framework, a learner receives larger and larger pieces of an arbitrary copy of a computable structure and, at each stage, is required to output a conjecture about the isomorphism type of such a structure. The learning is successful if the conjectures eventually stabilize to a correct guess. We prove that a family of structures is learnable if and only if its learning domain is continuously reducible to the relation E0 of eventual agreement on reals. This motivates a novel research program, that is, using descriptive set theoretic tools to calibrate the (learning) complexity of nonlearnable families. Here, we focus on the learning power of well-known benchmark Borel equivalence relations (i.e., E1, E2, E3, Z0, and Eset). |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2023.113762 |