An optimal tester for k-linear
A Boolean function f:{0,1}n→{0,1} is k-linear if it returns the sum (over the binary field F2) of exactly k coordinates of the input. In this paper, we study property testing of the classes k-Linear, the class of all k-linear functions, and k-Linear⁎, the class ∪j=0kj-Linear. We give a non-adaptive...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2023-03, Vol.950, p.113759, Article 113759 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Boolean function f:{0,1}n→{0,1} is k-linear if it returns the sum (over the binary field F2) of exactly k coordinates of the input. In this paper, we study property testing of the classes k-Linear, the class of all k-linear functions, and k-Linear⁎, the class ∪j=0kj-Linear. We give a non-adaptive distribution-free two-sided ϵ-tester for k-Linear that makesO(klogk+1ϵ) queries. This matches the lower bound known from the literature.
We then give a non-adaptive distribution-free one-sided ϵ-tester for k-Linear⁎ that makes the same number of queries and show that any non-adaptive uniform-distribution one-sided ϵ-tester for k-Linear must make at least Ω˜(k)logn+Ω(1/ϵ) queries. The latter bound almost matches the upper bound O(klogn+1/ϵ) known from the literature. We then show that any adaptive uniform-distribution one-sided ϵ-tester for k-Linear must make at least Ω˜(k)logn+Ω(1/ϵ) queries. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2023.113759 |