Dichotomy result on 3-regular bipartite non-negative functions
We prove a complexity dichotomy theorem for a class of Holant problems on 3-regular bipartite graphs. Given an arbitrary nonnegative weighted symmetric constraint function f=[x0,x1,x2,x3], we prove that the bipartite Holant problem Holant(f|(=3)) is either computable in polynomial time or #P-hard. T...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2023-03, Vol.949, p.113745, Article 113745 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a complexity dichotomy theorem for a class of Holant problems on 3-regular bipartite graphs. Given an arbitrary nonnegative weighted symmetric constraint function f=[x0,x1,x2,x3], we prove that the bipartite Holant problem Holant(f|(=3)) is either computable in polynomial time or #P-hard. The dichotomy criterion on f is explicit. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2023.113745 |