Nonzero-sum risk-sensitive stochastic differential games: A multi-parameter eigenvalue problem approach

We study nonzero-sum stochastic differential games with risk-sensitive ergodic cost criterion. Under certain conditions, using multi parameter eigenvalue approach, we establish the existence of a Nash equilibrium in the space of stationary Markov strategies. We achieve our results by studying the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems & control letters 2023-02, Vol.172, p.105443, Article 105443
Hauptverfasser: Ghosh, Mrinal K., Kumar, K. Suresh, Pal, Chandan, Pradhan, Somnath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study nonzero-sum stochastic differential games with risk-sensitive ergodic cost criterion. Under certain conditions, using multi parameter eigenvalue approach, we establish the existence of a Nash equilibrium in the space of stationary Markov strategies. We achieve our results by studying the relevant systems of coupled Hamilton–Jacobi–Bellman (HJB) equations. Exploiting the stochastic representation of the principal eigenfunctions we completely characterize Nash equilibrium points in the space of stationary Markov strategies. The complete characterization of Nash equilibrium points is established under an additive structural assumption on the running cost and the drift term.
ISSN:0167-6911
1872-7956
DOI:10.1016/j.sysconle.2022.105443