Port-Hamiltonian formulation of two-phase flow models
Two-phase flows are frequently modelled and simulated using the Two-Fluid Model (TFM) and the Drift Flux Model (DFM). This paper proposes Stokes–Dirac structures with respect to which port-Hamiltonian representations for such two-phase flow models can be obtained. We introduce a non-quadratic candid...
Gespeichert in:
Veröffentlicht in: | Systems & control letters 2021-03, Vol.149, p.104881, Article 104881 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-phase flows are frequently modelled and simulated using the Two-Fluid Model (TFM) and the Drift Flux Model (DFM). This paper proposes Stokes–Dirac structures with respect to which port-Hamiltonian representations for such two-phase flow models can be obtained. We introduce a non-quadratic candidate Hamiltonian function and present dissipative Hamiltonian representations for both models. We then use the structure of the corresponding formally skew-adjoint operator to derive a Stokes–Dirac structure for the two variants of multi-phase flow models. Moreover, we discuss the difficulties in deriving a port-Hamiltonian formulation of the DFM with general slip conditions, and argue why this model may not be energy-consistent. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2021.104881 |