On the quantification of aleatory and epistemic uncertainty using Sliced-Normal distributions
This paper proposes a means to characterize multivariate data. This characterization, given in terms of both probability distributions and data-enclosing sets, is instrumental in assessing and improving the robustness properties of system designs. To this end, we propose the Sliced-Normal (SN) class...
Gespeichert in:
Veröffentlicht in: | Systems & control letters 2019-12, Vol.134, p.104560, Article 104560 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a means to characterize multivariate data. This characterization, given in terms of both probability distributions and data-enclosing sets, is instrumental in assessing and improving the robustness properties of system designs. To this end, we propose the Sliced-Normal (SN) class of distributions. The versatility of SNs enables characterizing complex parameter dependencies with minimal modeling effort. A polynomial mapping which injects the physical space into a higher dimensional (so-called) feature space is first defined. Optimization-based strategies for the estimation of SNs from data in both physical and feature space are proposed. The non-convex formulations in physical space yield SNs having the best performance. However, the formulations in feature space either admit an analytical solution or yield a convex program thereby facilitating their application to high-dimensional datasets. The semi-algebraic form of the superlevel sets of a SN, form which a tight data-enclosing set can be readily identified, makes them amenable to rigorous worst-case based approaches to robustness analysis and robust design. Furthermore, we propose a chance-constrained optimization framework for identifying and eliminating the effects of outliers in the prescription of such a set. In addition, the distribution-free and non-asymptotic Scenario Theory framework is used to rigorously bound the probability of unseen data falling outside the identified data-enclosing set. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2019.104560 |