FastHand: Fast monocular hand pose estimation on embedded systems

Hand pose estimation is a fundamental task in many human–robot interaction-related applications. However, previous approaches suffer from unsatisfying hand landmark predictions in real-world scenes and high computation burden. This paper proposes a fast and accurate framework for hand pose estimatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems architecture 2022-01, Vol.122, p.102361, Article 102361
Hauptverfasser: An, Shan, Zhang, Xiajie, Wei, Dong, Zhu, Haogang, Yang, Jianyu, Tsintotas, Konstantinos A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hand pose estimation is a fundamental task in many human–robot interaction-related applications. However, previous approaches suffer from unsatisfying hand landmark predictions in real-world scenes and high computation burden. This paper proposes a fast and accurate framework for hand pose estimation, dubbed as “FastHand”. Using a lightweight encoder–decoder network architecture, FastHand fulfills the requirements of practical applications running on embedded devices. The encoder consists of deep layers with a small number of parameters, while the decoder uses spatial location information to obtain more accurate results. The evaluation took place on two publicly available datasets demonstrating the improved performance of the proposed pipeline compared to other state-of-the-art approaches. FastHand offers high accuracy scores while reaching a speed of 25 frames per second on an NVIDIA Jetson TX2 graphics processing unit.
ISSN:1383-7621
1873-6165
DOI:10.1016/j.sysarc.2021.102361