Study on density functional theory of MFe2O4 (M=Co, Ni, Cu) for electrocatalytic hydrogen and oxygen evolution reaction

The use of noble metals such as platinum (Pt) in electrocatalysts for oxygen and hydrogen evolution reactions has been studied for many years. However, the related electrocatalytic activity must be on par with Pt-based electrodes because of their high cost. Therefore, an attempt is made to find a lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surfaces and interfaces 2023-10, Vol.41, p.103249, Article 103249
Hauptverfasser: Bhinge, Guruprasad A., Teli, Atul D., Kengar, Nilesh N., Dakave, Siddhi S., Bhosale, A.K., Yadav, S.C., Kanamadi, Chidanand M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of noble metals such as platinum (Pt) in electrocatalysts for oxygen and hydrogen evolution reactions has been studied for many years. However, the related electrocatalytic activity must be on par with Pt-based electrodes because of their high cost. Therefore, an attempt is made to find a low-cost alternative material that can show good electrocatalytic performance. In this work, we focused on M-Fe2O4 (M = Co, Ni, and Cu) as a potential electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and theoretically studied it. As per our knowledge, no research regarding the theoretical investigation of an HER and OER electrocatalytic association with M-Fe2O4 is reported. This work is a simulation-based study on density functional theory to examine the combined electrocatalytic activity of M-Fe2O4 for HER and OER. The properties of the HER and OER processes, including the density of states, binding energies, band structure, charge transfer, and minimum-energy path, are studied and discussed. It is discovered that the energy barrier of the HER activity was computed lower in Ni-Fe2O4 is 0.046 eV, and the low computed energy barrier for OER in Co-Fe2O4 of 98 mV, irrespective of how it is set up. As a result, the study makes a detailed prediction that the suggested structure enhances MFe2O4's intrinsic electrocatalytic activity. Schematic 1: Graphical Representation [Display omitted]
ISSN:2468-0230
2468-0230
DOI:10.1016/j.surfin.2023.103249