Co3O4@Fe3O4/cellulose blend membranes for efficient degradation of perfluorooctanoic acid in the visible light-driven photo-Fenton system
Co3O4@Fe3O4/cellulose membrane was synthesized by coating rod-like MOF-derived Fe3O4 with Co3O4 nanoparticles and blending with cellulose solution, further applied in the visible light-driven photo-Fenton system for perfluorooctanoic acid (PFOA) degradation. In the H2O2/membrane/visible light system...
Gespeichert in:
Veröffentlicht in: | Surfaces and interfaces 2022-11, Vol.34, p.102302, Article 102302 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Co3O4@Fe3O4/cellulose membrane was synthesized by coating rod-like MOF-derived Fe3O4 with Co3O4 nanoparticles and blending with cellulose solution, further applied in the visible light-driven photo-Fenton system for perfluorooctanoic acid (PFOA) degradation. In the H2O2/membrane/visible light system, the Electron paramagnetic resonance (EPR) analysis and scavenger experiment results suggested that PFOA degradation was a co-dependent mechanism via photogenerated electrons, photogenerated holes (h+) and various radical species, rather than a single active constituent. Co3O4@Fe3O4/cellulose membrane showed outstanding degradation performance, stability and recyclability under optimal conditions. Compared with pure Fe3O4 or Co3O4 nanoparticles, the Co3O4@Fe3O4/cellulose membrane can degrade around 94.5% PFOA within 180 min in reaction system, and the leached Fe and Co was only 0.05 and 0.49 ppm, respectively. Moreover, Co3O4@Fe3O4/cellulose was reused by rinsing with ultra-pure water and the degradation capacity was still 80.4% after five cycles. The degradation pathway of PFOA also was proposed based on UHPLC-MS analysis. |
---|---|
ISSN: | 2468-0230 2468-0230 |
DOI: | 10.1016/j.surfin.2022.102302 |