Three-zone model for Ti, Al co-doped ZnO films deposited by magnetron sputtering

Al-doped ZnO is well known as an alternative Transparent Conductive Oxide (TCO) to Indium Tin Oxide (ITO). Recently, co-doped ZnO with Ti and Al (TAZO) have been explored to improve the conductivity while maintaining moisture durability and opto-electronic properties. In this context, the structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surfaces and interfaces 2022-02, Vol.28, p.101595, Article 101595
Hauptverfasser: Bocchese, Florian, Cornil, David, Haye, Emile, Cornil, Jérôme, Lucas, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Al-doped ZnO is well known as an alternative Transparent Conductive Oxide (TCO) to Indium Tin Oxide (ITO). Recently, co-doped ZnO with Ti and Al (TAZO) have been explored to improve the conductivity while maintaining moisture durability and opto-electronic properties. In this context, the structural, morphological, and optical properties of TAZO films deposited by reactive magnetron are investigated by experiments and Density Functional Theory (DFT) simulations. The results show that TiO2 units substitute Zn atoms in the ZnO wurtzite structure and, whatever the concentration of Ti, the formation of Al2O3 is taking place. In addition, a three-regime model as a function of Ti content is proposed to explain the evolution of the properties. First, for Ti content 〈 2.2 at%, TiO2 is incorporated by substitution of Zn by TiO2 units in the ZnO network leading to a more oxidized Zn state and a hybridization between Zn4s and Ti3d orbitals. This opens the bandgap and increases the compressive stress of TAZO films. Between 2.2 at% and 7.0 at% of Ti content, cauliflower shape grains appear due to the compressive stress induced by small clusters of TiO2. For Ti content 〉 7.0 at%, amorphous TAZO films are observed and are composed of TiO2, Al2O3 and ZnO.
ISSN:2468-0230
2468-0230
DOI:10.1016/j.surfin.2021.101595