Corrosive response for Ti-Si-C-N coating as a function of applied power
The present study demonstrates a detailed analysis of the electrochemical behavior of the nc-Ti-Si-C-N nanocomposite coating as a function of applied power (400 W, 450 W, 500 W and 550 W). Employing the structural and chemical analysis by XRD, XPS and TEM techniques, it was possible to determine tha...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2022-11, Vol.450, p.129005, Article 129005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study demonstrates a detailed analysis of the electrochemical behavior of the nc-Ti-Si-C-N nanocomposite coating as a function of applied power (400 W, 450 W, 500 W and 550 W). Employing the structural and chemical analysis by XRD, XPS and TEM techniques, it was possible to determine that this coating presents a structure formed by an amorphous zone (a-SiCN) and nanocrystals (nc-TiSiCN). The vibrational analysis using the FTIR technique indicated that the Ti-Si-C-N phase increases as a function of applied power, obtaining an increase of 48 % compared between the coatings obtained with 400 W and 550 W power. The observed corrosion behavior showed that the coating obtained with a power of 550 W presented a decrease of 42 % for the corrosion rate compared with the coating obtained with 400 W and showed a decrease of 98 % for the corrosion rate when compared with uncoated HSS steel. All results obtained in this research determined that the nc-TiSiCN coating obtained with 550 W offers the best set of structural and electrochemical properties, and would serve as an excellent alternative to contemporary protective surfaces on industrial devices exposed to a corrosive environment.
•Novel physical properties obtained in nc-Ti-Si-C-N quaternary nanocomposite coatings.•Electrochemical and wear enhancements of nc-Ti-Si-C-N nanocomposite coatings.•Reduction of the corrosion effect on nc-Ti-Si-C-N nanocomposite as function of applied power. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2022.129005 |