Replication in random translation designs
Replication is a commonly recommended feature of experimental designs. However, its impact in model-robust design is relatively under-explored; indeed, replication is impossible within the current formulation of random translation designs, which were introduced recently for model-robust prediction....
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2024-12, Vol.215, p.110229, Article 110229 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Replication is a commonly recommended feature of experimental designs. However, its impact in model-robust design is relatively under-explored; indeed, replication is impossible within the current formulation of random translation designs, which were introduced recently for model-robust prediction. Here we extend the framework of random translation designs to allow replication, and quantify the resulting performance impact. The extension permits a simplification of our earlier heuristic for constructing random translation strategies from a traditional V-optimal design. Namely, in the previous formulation any replicates of the V-optimal design first had to be split up before a random translation can be applied to the design points. With the new framework we can instead preserve the replicates instead if we so wish. Surprisingly, we find that in low-dimensional problems it is often substantially more efficient to continue to split replicates, while in high-dimensional problems it can be substantially better to retain replicates. |
---|---|
ISSN: | 0167-7152 |
DOI: | 10.1016/j.spl.2024.110229 |