Properties of marginal sequential Monte Carlo methods
We provide a framework which admits a number of “marginal” sequential Monte Carlo (SMC) algorithms as particular cases — including the marginal particle filter (Klaas et al., 2005), the independent particle filter (Lin et al., 2005) and linear-cost Approximate Bayesian Computation SMC (Sisson et al....
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2023-12, Vol.203, p.109914, Article 109914 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a framework which admits a number of “marginal” sequential Monte Carlo (SMC) algorithms as particular cases — including the marginal particle filter (Klaas et al., 2005), the independent particle filter (Lin et al., 2005) and linear-cost Approximate Bayesian Computation SMC (Sisson et al., 2007). We provide conditions under which such algorithms obey laws of large numbers and central limit theorems and provide some further asymptotic characterizations. Finally, it is shown that the asymptotic variance of a class of estimators associated with certain marginal SMC algorithms is never greater than that of the estimators provided by a standard SMC algorithm using the same proposal distributions. |
---|---|
ISSN: | 0167-7152 1879-2103 |
DOI: | 10.1016/j.spl.2023.109914 |