Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums under sub-linear expectations

Let {X,Xn;n≥0} be a sequence of independent and identically distributed random variables in a sub-linear expectation space (Ω,H,Ê). We establish Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums in a sub-linear expectation space. Our results extend the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics & probability letters 2023-06, Vol.197, p.109818, Article 109818
1. Verfasser: Feng, Fengxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let {X,Xn;n≥0} be a sequence of independent and identically distributed random variables in a sub-linear expectation space (Ω,H,Ê). We establish Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums in a sub-linear expectation space. Our results extend the corresponding complete convergence results of probability spaces to sub-linear expectation spaces.
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2023.109818