Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums under sub-linear expectations
Let {X,Xn;n≥0} be a sequence of independent and identically distributed random variables in a sub-linear expectation space (Ω,H,Ê). We establish Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums in a sub-linear expectation space. Our results extend the...
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2023-06, Vol.197, p.109818, Article 109818 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {X,Xn;n≥0} be a sequence of independent and identically distributed random variables in a sub-linear expectation space (Ω,H,Ê). We establish Baum–Katz-type complete and complete moment convergence theorems for the maximum of partial sums in a sub-linear expectation space. Our results extend the corresponding complete convergence results of probability spaces to sub-linear expectation spaces. |
---|---|
ISSN: | 0167-7152 1879-2103 |
DOI: | 10.1016/j.spl.2023.109818 |