Adaptive signal recovery with Subbotin noise
In this article, we study the problem of high-dimensional variable selection. Specifically, we consider a single vector X from a sparse sequence model with Subbotin noise and derive the regions of variable selection with respect to a Hamming loss function.
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2023-05, Vol.196, p.109791, Article 109791 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the problem of high-dimensional variable selection. Specifically, we consider a single vector X from a sparse sequence model with Subbotin noise and derive the regions of variable selection with respect to a Hamming loss function. |
---|---|
ISSN: | 0167-7152 1879-2103 |
DOI: | 10.1016/j.spl.2023.109791 |