Asymptotic expansions of powered skew-normal extremes

Let Mn denote the partial maximum of a sequence of independent random variables with common skew-normal distribution Fλ(x) with parameter λ. In this paper, higher-order distributional expansions and convergence rates of powered skew-normal extremes are considered. It is shown that with optimal norma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics & probability letters 2020-03, Vol.158, p.108667, Article 108667
Hauptverfasser: Xiong, Qian, Peng, Zuoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Mn denote the partial maximum of a sequence of independent random variables with common skew-normal distribution Fλ(x) with parameter λ. In this paper, higher-order distributional expansions and convergence rates of powered skew-normal extremes are considered. It is shown that with optimal normalizing constants the convergence rate of the distribution of |Mn|t to its ultimate extreme value distribution is the order of 1∕(logn)2 as t=2, and the convergence rate is the order of 1∕logn for the case of 0
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2019.108667