Asymptotic expansions of powered skew-normal extremes
Let Mn denote the partial maximum of a sequence of independent random variables with common skew-normal distribution Fλ(x) with parameter λ. In this paper, higher-order distributional expansions and convergence rates of powered skew-normal extremes are considered. It is shown that with optimal norma...
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2020-03, Vol.158, p.108667, Article 108667 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Mn denote the partial maximum of a sequence of independent random variables with common skew-normal distribution Fλ(x) with parameter λ. In this paper, higher-order distributional expansions and convergence rates of powered skew-normal extremes are considered. It is shown that with optimal normalizing constants the convergence rate of the distribution of |Mn|t to its ultimate extreme value distribution is the order of 1∕(logn)2 as t=2, and the convergence rate is the order of 1∕logn for the case of 0 |
---|---|
ISSN: | 0167-7152 1879-2103 |
DOI: | 10.1016/j.spl.2019.108667 |