A Bayesian nonparametric spatial model with covariate-dependent joint weights

This paper presents a spatial process with covariate-dependent random joint distributions. Our construction is based on an extension of the Gaussian copula model using the Beta-regression process. As a generalized form of stick-breaking processes, the proposed model allows the covariance function to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spatial statistics 2022-10, Vol.51, p.100662, Article 100662
Hauptverfasser: Yarali, Esmail, Rivaz, Firoozeh, Jafari Khaledi, Majid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a spatial process with covariate-dependent random joint distributions. Our construction is based on an extension of the Gaussian copula model using the Beta-regression process. As a generalized form of stick-breaking processes, the proposed model allows the covariance function to be covariate-driven nonstationary. Also, the resulting labeling process provides a covariate-dependent random partitioning. Markov chain Monte Carlo methods are used to make Bayesian inferences. The effectiveness of this model in segmentation of the domain and prediction performance are assessed through a simulation study. Additionally, results from a real dataset demonstrate that the proposed model possesses better spatial prediction performance over other competing models.
ISSN:2211-6753
2211-6753
DOI:10.1016/j.spasta.2022.100662