Measurement error-filtered machine learning in digital soil mapping
This paper presents a two-stage maximum likelihood framework to deal with measurement errors in digital soil mapping (DSM) when using a machine learning (ML) model. The framework is implemented with random forest and projection pursuit regression to illustrate two different areas of machine learning...
Gespeichert in:
Veröffentlicht in: | Spatial statistics 2022-03, Vol.47, p.100572, Article 100572 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a two-stage maximum likelihood framework to deal with measurement errors in digital soil mapping (DSM) when using a machine learning (ML) model. The framework is implemented with random forest and projection pursuit regression to illustrate two different areas of machine learning, i.e. ensemble learning with trees and feature-learning. In our proposed framework, a measurement error variance (MEV) is incorporated as a weight in the log-likelihood function so that measurements with a larger MEV receive less weight when a ML model is calibrated. We evaluate the performance of the error-filtered ML models with an error-filtered regression kriging model, in a comprehensive simulation study and in a real-world case study of Namibian data. From the results we show that prediction accuracy can be increased by using our proposed framework, especially when the MEVs are large and heterogeneous. |
---|---|
ISSN: | 2211-6753 2211-6753 |
DOI: | 10.1016/j.spasta.2021.100572 |