On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes

We establish sufficient conditions for the existence, and derive explicit formulas for the κ’th moments, κ≥1, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2024-08, Vol.174, p.104382, Article 104382
Hauptverfasser: Behme, Anita, Di Tella, Paolo, Sideris, Apostolos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish sufficient conditions for the existence, and derive explicit formulas for the κ’th moments, κ≥1, of Markov modulated generalized Ornstein–Uhlenbeck processes as well as their stationary distributions. In particular, the running mean, the autocovariance function, and integer moments of the stationary distribution are derived in terms of the characteristics of the driving Markov additive process. Our derivations rely on new general results on moments of Markov additive processes and (multidimensional) integrals with respect to Markov additive processes.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2024.104382