Heat kernel bounds and Ricci curvature for Lipschitz manifolds

Given any d-dimensional Lipschitz Riemannian manifold (M,g) with heat kernel p, we establish uniform upper bounds on p which can always be decoupled in space and time. More precisely, we prove the existence of a constant C>0 and a bounded Lipschitz function R:M→(0,∞) such that for every x∈M and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2024-04, Vol.170, p.104292, Article 104292
Hauptverfasser: Braun, Mathias, Rigoni, Chiara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given any d-dimensional Lipschitz Riemannian manifold (M,g) with heat kernel p, we establish uniform upper bounds on p which can always be decoupled in space and time. More precisely, we prove the existence of a constant C>0 and a bounded Lipschitz function R:M→(0,∞) such that for every x∈M and every t>0, supy∈Mp(t,x,y)≤Cmin{t,R2(x)}−d/2.This allows us to identify suitable weighted Lebesgue spaces w.r.t. the given volume measure as subsets of the Kato class induced by (M,g). In the case ∂M≠0̸, we also provide an analogous inclusion for Lebesgue spaces w.r.t. the surface measure on ∂M. We use these insights to give sufficient conditions for a possibly noncomplete Lipschitz Riemannian manifold to be tamed, i.e. to admit a measure-valued lower bound on the Ricci curvature, formulated in a synthetic sense.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2023.104292