Heat kernel bounds and Ricci curvature for Lipschitz manifolds
Given any d-dimensional Lipschitz Riemannian manifold (M,g) with heat kernel p, we establish uniform upper bounds on p which can always be decoupled in space and time. More precisely, we prove the existence of a constant C>0 and a bounded Lipschitz function R:M→(0,∞) such that for every x∈M and e...
Gespeichert in:
Veröffentlicht in: | Stochastic processes and their applications 2024-04, Vol.170, p.104292, Article 104292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given any d-dimensional Lipschitz Riemannian manifold (M,g) with heat kernel p, we establish uniform upper bounds on p which can always be decoupled in space and time. More precisely, we prove the existence of a constant C>0 and a bounded Lipschitz function R:M→(0,∞) such that for every x∈M and every t>0, supy∈Mp(t,x,y)≤Cmin{t,R2(x)}−d/2.This allows us to identify suitable weighted Lebesgue spaces w.r.t. the given volume measure as subsets of the Kato class induced by (M,g). In the case ∂M≠0̸, we also provide an analogous inclusion for Lebesgue spaces w.r.t. the surface measure on ∂M.
We use these insights to give sufficient conditions for a possibly noncomplete Lipschitz Riemannian manifold to be tamed, i.e. to admit a measure-valued lower bound on the Ricci curvature, formulated in a synthetic sense. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2023.104292 |