Quantifying thermophysical properties, characterization, and thermal cycle testing of nano-enhanced organic eutectic phase change materials for thermal energy storage applications

Dispersion of highly conductive nanoparticles in Phase Change Materials (PCMs) tends to improve the thermophysical properties of nanocomposites. The current research condenses the synthesis, chemical, physical, and thermal characterization of novel nano-enhanced eutectic phase change materials (NeUP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2022-12, Vol.248, p.112008, Article 112008
Hauptverfasser: Jacob, Jeeja, Pandey, A.K., Rahim, Nasrudin Abd, Selvaraj, Jeyraj, Paul, John, Samykano, M., Saidur, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dispersion of highly conductive nanoparticles in Phase Change Materials (PCMs) tends to improve the thermophysical properties of nanocomposites. The current research condenses the synthesis, chemical, physical, and thermal characterization of novel nano-enhanced eutectic phase change materials (NeUPCMs) dispersed with TiO2 nanofillers for thermal management applications. The base matrix primarily comprises of a eutectic of paraffin wax and palmitic acid. Detailed analysis of the uncertainty of each thermophysical property measured was performed. The synthesized nanocomposite logged a maximal thermal conductivity of 0.59 W/mK (2.3-fold as compared with the base-0.25 W/mK) with 0.5% nanofillers. The composites displayed excellent solar transmissivity (82%) as they were doped with nanofillers having a high refractive index. The latent heat of the NeUPCMs got enhanced by 17% whereas the melting point showed a slight decrement in nanocomposites. Further, zero phase segregation, no subcooling, stable phase transition temperature, and good chemical, and thermal stability were noted from digital scanning calorimetry results with NeUPCMs. The composites exhibited good thermal reliability beyond 500 thermal cycles. It could be potentially deployed in the thermal management of medium-temperature systems like PVT and LCPVT systems. [Display omitted] •Novel nanocomposites were synthesized using paraffin wax, palmitic acid, and TiO2.•Nanocomposite had a maximal enhancement of 131.5% in thermal conductivity.•38% rise in solar transmittance when compared with the eutectic base.•Thermophysical properties remained stable even after 500 thermal cycles.
ISSN:0927-0248
1879-3398
DOI:10.1016/j.solmat.2022.112008