Anisotropy of the charge transport in Ho11B12 antiferromagnet with dynamic charge stripes

We present the results of precise magnetoresistance Δρ/ρ measurements of HoB12 dodecaboride with dynamic charge stripes for various orientations of the external magnetic field up to 80 kOe relative to the crystal structure and for different temperatures in the antiferromagnetic phase. The performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state sciences 2020-06, Vol.104, p.106253, Article 106253
Hauptverfasser: Krasikov, K.M., Bogach, A.V., Bozhko, A.D., Glushkov, V.V., Demishev, S.V., Khoroshilov, A.L., Shitsevalova, N. Yu, Filipov, V., Gabáni, S., Flachbart, K., Sluchanko, N.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the results of precise magnetoresistance Δρ/ρ measurements of HoB12 dodecaboride with dynamic charge stripes for various orientations of the external magnetic field up to 80 kOe relative to the crystal structure and for different temperatures in the antiferromagnetic phase. The performed analysis allowed us to separate different Δρ/ρ contributions and find coefficients attributed to the linear positive and quadratic negative magnetoresistance components and their changing with temperature and magnetic field intensity and direction. It is deduced that strong Maltese-cross type anisotropy in charge carriers scattering is mainly attributed to the renormalization of RKKY-exchange interaction due to high-frequency oscillations of charge carriers in dynamic charge stripes. [Display omitted] •Dynamic charge stripes in RB12 are crucial for the formation of MR anisotropy.•Scattering on 4f-5d spin fluctuations result in the large negative MR appearance.•The slope of the MR's linear part decrease with magnetic field and temperature rising.•Anisotropy is due to the destruction of the indirect exchange interaction along
ISSN:1293-2558
1873-3085
DOI:10.1016/j.solidstatesciences.2020.106253