Seismic stability evaluation of rubble mound breakwater: Shake table tests and numerical analyses
Rubble mound (RM) breakwaters are coastal structures constructed to provide tranquil condition around the port areas. After past earthquakes such as the 2004 Indian Ocean earthquake and the 2011 Great East Japan earthquake, it was found that stability of breakwater not only depends on the wave actio...
Gespeichert in:
Veröffentlicht in: | Soil dynamics and earthquake engineering (1984) 2024-03, Vol.178, p.108466, Article 108466 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rubble mound (RM) breakwaters are coastal structures constructed to provide tranquil condition around the port areas. After past earthquakes such as the 2004 Indian Ocean earthquake and the 2011 Great East Japan earthquake, it was found that stability of breakwater not only depends on the wave action but seismic motions also play an important role for this. Very limited studies are available for the stability evaluation of RM Breakwater under earthquake motions by conducting physical model tests. To the end, an attempt has been made in the study to evaluate the stability of RM breakwater subjected to earthquake loadings. A series of shaking table tests conducted to evaluate the seismic behaviour of the RM breakwater. A prototype RM breakwater is modelled on two layers of seabed foundation soil. Different amplitudes of sinusoidal seismic motions (foreshocks and main shock) are provided at the base of the model. Later, the breakwater stability was evaluated for real earthquake motions. Various parameters such as settlement, horizontal displacement, acceleration-time histories and excess pore water pressure were measured during the tests. Deformation pattern was also studied by photos and videos captured during the tests. During the mainshock, the crown wall settled by 111 % more comparable to second foreshock; and the structure laterally displaced by more than 200 % comparable with first foreshock. The peak acceleration of input wave amplified while it was travelling from bottom to the crest of breakwater. The excess pore water pressure was maximum beneath the rubble mound, in loose sand and it was five times more during the mainshock compared to first foreshock. Due to loss in bearing capacity of foundation soil, the breakwater collapsed. Also, the effects like rolling down of armor units, densification and slumping of core material, shear deformation of breakwater body were observed during the main shock. Thus, the breakwater failed during the mainshock. Numerical analyses were also executed for both sinusoidal and real earthquake motions to make clear the mechanism of the breakwater behaviour subjected to the earthquake loadings.
•The seismic responses of RM breakwater were evaluated by series of shake table tests and numerical simulations.•The increase in acceleration amplitude led to large settlements and horizontal displacements of breakwater.•The stability of model breakwater started to lose at the base, in junction between sand and breakwater as ampl |
---|---|
ISSN: | 0267-7261 1879-341X |
DOI: | 10.1016/j.soildyn.2024.108466 |