A reaction-based fluorescent probe for MGO visualization and its application for in vivo imaging and drought stress monitoring in Arabidopsis thaliana

Methylglyoxal (MGO) is a highly reactive metabolic byproduct present in both plants and animals, closely linked to various disease developments. And fluorescent probes, with their high sensitivity, non-invasiveness, and real-time visualization, are ideal for MGO monitoring. While most existing MGO f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2025-01, Vol.423, p.136806, Article 136806
Hauptverfasser: Cheng, Zhihui, Liu, Tingting, Wu, Yuchun, Qiu, Yuan, Liu, Genyan, Sun, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methylglyoxal (MGO) is a highly reactive metabolic byproduct present in both plants and animals, closely linked to various disease developments. And fluorescent probes, with their high sensitivity, non-invasiveness, and real-time visualization, are ideal for MGO monitoring. While most existing MGO fluorescence probes are designed for applications in cells and animals, none have been applied to studying MGO levels in plants. To address this gap, we herein present a coumarin derivative fluorescent probe, CNDS, with exceptional selectivity and sensitivity to MGO. Our research demonstrated that CNDS can sensitively and selectively detect MGO in solution and has been successfully employed for imaging endogenous and exogenous MGO levels in living cells, zebrafish, and Arabidopsis thaliana. Most importantly, CNDS has successfully tracked MGO levels in Arabidopsis thaliana, indicating that high MGO levels can inhibit the root growth of Arabidopsis thaliana. Additionally, we observed that MGO levels in Arabidopsis thaliana increased when subjected to drought stress, contributing to inhibited root development and shorter root lengths. The results reveal the direct impact of MGO levels on plant growth and its potential as a key marker in drought stress studies. And our findings highlight the capability of probe CNDS as a versatile tool for monitoring MGO dynamics in plant growth and development, providing significant potential for advancing the understanding of plant growth mechanisms. •A novel fluorescent probe CNDS was constructed for the selective and sensitive detection of MGO.•The probe CNDS can track endogenous and exogenous MGO levels in living cells, zebrafish, and Arabidopsis thaliana.•The probe CNDS can be used to monitor root growth in Arabidopsis thaliana under drought stress.
ISSN:0925-4005
DOI:10.1016/j.snb.2024.136806