Highly selective gas sensors for formaldehyde detection based on ZnO@ZIF‑8 core-shell heterostructures

Formaldehyde is a hazardous volatile organic pollutant commonly found indoors, making selective and accurate detection of formaldehyde crucial. To achieve this, ZnO@ZIF-8 core-shell heterostructures were fabricated using the sacrificial template method, where the 3D ZnO flower-like structures served...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2024-01, Vol.398, p.134689, Article 134689
Hauptverfasser: Zhang, Yue, Wang, Mingyue, San, Xiaoguang, Zhang, Lei, Wang, Nana, Wang, Guosheng, Meng, Dan, Shen, Yanbai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Formaldehyde is a hazardous volatile organic pollutant commonly found indoors, making selective and accurate detection of formaldehyde crucial. To achieve this, ZnO@ZIF-8 core-shell heterostructures were fabricated using the sacrificial template method, where the 3D ZnO flower-like structures served as the core material. This innovative approach utilizing the ZIF-8 shell as a “selective gas filter” offers a novel pathway for enhancing the selectivity of formaldehyde sensors. Subsequent investigations revealed that the thickness of the ZIF-8 shell significantly influences the material’s performance. Among various configurations tested, the 2-ZnO@ZIF-8 sensor demonstrates the best formaldehyde detection properties, including high response (5 ppm, 5.03), excellent selectivity, short response and recovery times (29/40 s), excellent long-term stability, and a low theoretical detection limit (12.86 ppb) at 175 °C. The enhanced sensing properties can be attributed to the ZIF-8 surface’s high adsorption energy for formaldehyde molecules and the selective screening of gas molecules by ZIF-8. Overall, our study presents a promising strategy for developing highly selective gas sensors for formaldehyde detection, with the potential to contribute to improved indoor air quality monitoring and safety measures. [Display omitted] •The flower-like ZnO@ZIF-8 core-shell heterostructures were synthesized using a sacrificial template method.•The core-shell heterostructures effectively improve the selectivity to formaldehyde.•The performance improvement is mainly due to the gas adsorption and particle size screening of the ZIF-8 shell.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2023.134689