Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs
[Display omitted] A simple, facile and low-cost modification of multiwalled carbon nanotubes (MWCNT) with β-cyclodextrin (βCD) through a physical (Phys) and a covalent approach via Steglich esterification (SE) is demonstrated for the detection of lead (Pb). The Pb sensing performance is governed by...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2019-10, Vol.296, p.126632, Article 126632 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
A simple, facile and low-cost modification of multiwalled carbon nanotubes (MWCNT) with β-cyclodextrin (βCD) through a physical (Phys) and a covalent approach via Steglich esterification (SE) is demonstrated for the detection of lead (Pb). The Pb sensing performance is governed by the amount of βCD present in the MWCNT-βCD matrix and the physical/chemical attachment of βCD with MWCNT. The physically modified MWCNT-βCD based electrode showed high sensitivity of 98 nA/ppb with a limit of detection of 0.9 ppb but poorer reliability, whereas the chemically modified MWCNT-βCD electrode results in moderate sensitivity of 38.6 nA/ppb and a limit of detection of 2.3 ppb. The modified sensors showed reproducibility of more than 90% and reusability of at least six times. The proposed sensors offer a promising technology in developing a highly affordable and sensitive electrochemical sensing system for monitoring the Pb level in drinking water. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2019.126632 |