Covariance recovery for one-bit sampled stationary signals with time-varying sampling thresholds
One-bit quantization, which relies on comparing the signals of interest with given threshold levels, has attracted considerable attention in signal processing for communications and sensing. A useful tool for covariance recovery in such settings is the arcsine law, that estimates the normalized cova...
Gespeichert in:
Veröffentlicht in: | Signal processing 2023-05, Vol.206, p.108899, Article 108899 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One-bit quantization, which relies on comparing the signals of interest with given threshold levels, has attracted considerable attention in signal processing for communications and sensing. A useful tool for covariance recovery in such settings is the arcsine law, that estimates the normalized covariance matrix of zero-mean stationary input signals. This relation, however, only considers a zero sampling threshold, which can cause a remarkable information loss. In this paper, the idea of the arcsine law is extended to the case where one-bit analog-to-digital converters (ADCs) apply time-varying thresholds. Specifically, three distinct approaches are proposed, investigated, and compared, to recover the autocorrelation sequence of the stationary signals of interest. Additionally, we will study a modification of the Bussgang law, a famous relation facilitating the recovery of the cross-correlation between the one-bit sampled data and the zero-mean stationary input signal. Similar to the case of the arcsine law, the Bussgang law only considers a zero sampling threshold. This relation is also extended to accommodate the more general case of time-varying thresholds for the stationary input signals. |
---|---|
ISSN: | 0165-1684 1872-7557 |
DOI: | 10.1016/j.sigpro.2022.108899 |