Metal-organic framework-derived ZnxCd1-xS/ZnxCd1-x-MOF heterostructures promoting charge separation for photocatalytic hydrogen evolution

[Display omitted] •ZnxCd1-xS/ZnxCd1-x-MOF heterostructures are prepared by a two-step solvothermal process.•The optimized Zn0.2Cd0.8S/Zn0.2Cd0.8-MOF heterojunction exhibits a hydrogen production rate of 13.3 mmol g-1h−1.•The optimized Zn0.2Cd0.8S/Zn0.2Cd0.8-MOF heterojunction achieves excellent stab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2025-02, Vol.354, p.129089, Article 129089
Hauptverfasser: Ma, Siqing, Wang, Xin, Wan, Kang, Liu, Boyan, Yang, Yilong, Wang, Songcan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •ZnxCd1-xS/ZnxCd1-x-MOF heterostructures are prepared by a two-step solvothermal process.•The optimized Zn0.2Cd0.8S/Zn0.2Cd0.8-MOF heterojunction exhibits a hydrogen production rate of 13.3 mmol g-1h−1.•The optimized Zn0.2Cd0.8S/Zn0.2Cd0.8-MOF heterojunction achieves excellent stability for up to 25 h.•The strong interfacial interaction between Zn0.2Cd0.8S and Zn0.2Cd0.8-MOF promotes charge transfer and separation. Severe charge recombination is a bottleneck for efficient photocatalytic hydrogen production. Herein, ZnxCd1-xS/ZnxCd1-x-MOF heterostructures with enhanced photocatalytic hydrogen evolution activity are synthesized by a two-step solvothermal process based on a metal–organic framework (MOF) template method. By carefully tuning the composition and the reaction temperatures, the obtained Zn0.2Cd0.8S/Zn0.2Cd0.8-MOF heterojunction can continuously generate hydrogen for 25 h, with an optimized hydrogen production rate of 13.3 mmol g-1h−1. An impressive apparent quantum yield of 24.1 % at 420 nm monochromatic light is achieved. Zn0.2Cd0.8S nanoparticles are embedded in the Zn0.2Cd0.8-MOF skeleton during the solvothermal process, resulting in excellent distribution and interfacial contact in the obtained heterojunction. Such a heterostructure not only promotes charge separation, but also alleviates photocorrosion. The proof-of-concept demonstrated in this work provides an alternative way for the design of high-performance metal sulfide-based photocatalysts for efficient solar hydrogen production.
ISSN:1383-5866
DOI:10.1016/j.seppur.2024.129089