Highly efficient separation of CO2/N2 and CO2/CH4 via metal-ion regulation in ultra-microporous metal-organic frameworks

Regulation of the ultra-microporous pore was achieved through metal ion regulation, obtaining ideal pore channels for realizing CO2 adsorption. [Display omitted] •Metal-ion regulation in MOFs enhances CO2/N2 and CO2/CH4 separation efficiency.•ZSTU-8-Cd exhibits superior CO2 uptake and selectivity ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2025-02, Vol.354, p.128890, Article 128890
Hauptverfasser: Zheng, Yanchun, Chen, Yiqi, Niu, Junjie, Zhao, Tao, Ibragimov, Aziz Bakhtiyarovich, Xu, Hui, Gao, Junkuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regulation of the ultra-microporous pore was achieved through metal ion regulation, obtaining ideal pore channels for realizing CO2 adsorption. [Display omitted] •Metal-ion regulation in MOFs enhances CO2/N2 and CO2/CH4 separation efficiency.•ZSTU-8-Cd exhibits superior CO2 uptake and selectivity over ZSTU-8-Zn.•Dynamic breakthrough experiments confirm practical separation efficiency of ZSTU-8-Cd. Efficient separation of CO2 from CH4 and N2 is crucial for industrial processes. This study presents a novel approach to enhance CO2/N2 and CO2/CH4 separation using metal-ion regulation in ultra-microporous metal–organic frameworks (MOFs). Specifically, we synthesized ZSTU-8-M (M=Cd, Zn) by coordinating norfloxacin ligands with different metal ions, achieving precise modulation of the pore structure. Ideal adsorption solution theory (IAST) calculations demonstrated that ZSTU-8-Cd exhibited superior selectivity for CO2/N2 (952) and CO2/CH4 (369) mixtures compared to ZSTU-8-Zn. Grand canonical Monte Carlo (GCMC) simulations and in situ single-crystal X-ray diffraction (SCXRD) confirmed the presence of specific CO2 binding sites within the pore channels. The CO2 molecule shows a unique strong adsorption mechanism of hydrogen bonding sites in this structure, and thus achieves high adsorption capacity at low pressure. Dynamic breakthrough experiments further validated the practical separation efficiency of ZSTU-8-Cd, with high retention times and saturated adsorption capacities for CO2. These findings highlight the ability of metal-ion modulation to achieve simultaneous improvement in adsorption capacity and selectivity, demonstrating the potential of MOFs for advanced gas separation applications.
ISSN:1383-5866
DOI:10.1016/j.seppur.2024.128890