Polyethersulfone ultrafiltration membrane incorporated with ferric-based metal-organic framework for textile wastewater treatment

[Display omitted] •Incorporation of Fe-MOF nanoparticles improved dye rejection of polymeric membrane.•The optimum loading of Fe-MOF for the MMM fabrication is 6 wt%.•The developed MMM is promising for the treatment of textile wastewater. The wastewater discharged from dye-manufacturing industries c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2021-09, Vol.270, p.118819, Article 118819
Hauptverfasser: Johari, Nur Azizah, Yusof, Norhaniza, Lau, Woei Jye, Abdullah, Norfadhilatuladha, Salleh, Wan Norharyati Wan, Jaafar, Juhana, Aziz, Farhana, Ismail, Ahmad Fauzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Incorporation of Fe-MOF nanoparticles improved dye rejection of polymeric membrane.•The optimum loading of Fe-MOF for the MMM fabrication is 6 wt%.•The developed MMM is promising for the treatment of textile wastewater. The wastewater discharged from dye-manufacturing industries can pose severe problems to the ecosystem and the use of conventional ultrafiltration (UF) polymeric membrane is still not capable of removing dyes from the wastewater. In this work, hybrid flat sheet mixed matrix membranes were fabricated by blending polyethersulfone (PES) with different weight percentage of ferric-based metal–organic framework (Fe-MOF), aiming to overcome the drawback of PES membrane. Findings revealed that the Fe-MOF/PES membranes attained excellent rejections (>98.5%) for cationic and anionic dyes with its optimum permeation flux as high as 165.68 L/m2h, comparable to other reported UF membranes. Moreover, the fouling study conducted using real textile wastewater revealed the potential of the hybrid membrane for reducing the levels of total suspended solid (100% rejection) and chemical oxygen demand (>92%) while exhibiting high flux recovery rate (>90%). These results suggested that the Fe-MOF/PES hybrid UF membrane has great potential for efficient industrial wastewater treatment.
ISSN:1383-5866
1873-3794
DOI:10.1016/j.seppur.2021.118819