Impact of chemical short-range order on radiation damage in Fe-Ni-Cr alloys
Chemical short-range order (CSRO), as a nanoscale atomic feature, has been found to significantly alter material properties in various alloys. Here, we use Fe-Ni-Cr alloys to demonstrate how CSRO affects defect properties and radiation behavior, based on extensive molecular dynamics simulations. Sta...
Gespeichert in:
Veröffentlicht in: | Scripta materialia 2023-05, Vol.229, p.115373, Article 115373 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical short-range order (CSRO), as a nanoscale atomic feature, has been found to significantly alter material properties in various alloys. Here, we use Fe-Ni-Cr alloys to demonstrate how CSRO affects defect properties and radiation behavior, based on extensive molecular dynamics simulations. Statistically significant results are obtained as a function of dose for three CSRO levels. The random solution as an energetically unfavorable state (negative stacking fault energy) shows the strongest tendency to enable diffusion, while a high CSRO degree scenario generally reduces the effective defect diffusivity due to trapping effects, leading to distinct defect dynamics. Notably, in the high-CSRO scenario, interstitial clusters are Cr-rich and interstitial loops preferentially reside in/near the Cr-rich CSRO domains. Also, CSRO is dynamically evolving in a decreasing or increasing manner upon irradiation, reaching a steady-state value. These new understandings suggest the importance of incorporating the effect of CSRO in investigating radiation-driven microstructural evolution. |
---|---|
ISSN: | 1359-6462 1872-8456 |
DOI: | 10.1016/j.scriptamat.2023.115373 |