Matrix controlled structural phase transformations in embedded metallic nanoparticles

Non-equilibrium synthesis and post-processing methods may result in unique and unexpected microstructures. In arc-melted and subsequently laser-glazed Al-0.5 at% Co alloys, we show via high-resolution transmission electron microscopy lattice-imaging that cobalt forms coherent face-centered cubic nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta materialia 2022-05, Vol.213, p.114632, Article 114632
Hauptverfasser: Hung, Cain J., Nayak, Sanjeev K., Parent, Lucas R., Hebert, Rainer J., Pamir Alpay, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-equilibrium synthesis and post-processing methods may result in unique and unexpected microstructures. In arc-melted and subsequently laser-glazed Al-0.5 at% Co alloys, we show via high-resolution transmission electron microscopy lattice-imaging that cobalt forms coherent face-centered cubic nanoprecipitates. Using first-principles methods and a common-neighbor analysis, we explain the reasons for this and then expand the model by introducing nanoprecipitates of 4th-row transition metals into aluminum and titanium supercells. Our results indicate that the lattice strain and the physio-chemical interactions across the matrix-particle interface play significant roles in the crystal structure of the precipitate. Our computations make surprising predictions; for example, a hexagonal close packed copper can be stabilized in a titanium matrix and cubic zinc can be formed in an aluminum matrix. Extrapolating from these findings, we hypothesize that new allotropic forms of transition metals can be accessed through non-equilibrium processing and careful design of lattice strains. [Display omitted]
ISSN:1359-6462
1872-8456
DOI:10.1016/j.scriptamat.2022.114632