Hydrogen uptake and its influence in selective laser melted austenitic stainless steel: A nanoindentation study
The effect of hydrogen (H) charging on the nanoindentation response of a selective laser melted (SLM) 316L austenitic stainless steel was investigated and compared with its conventionally manufactured (CM) counterpart. Results show that the hardness increment in the SLM samples due to H charging is...
Gespeichert in:
Veröffentlicht in: | Scripta materialia 2021-03, Vol.194, p.113718, Article 113718 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of hydrogen (H) charging on the nanoindentation response of a selective laser melted (SLM) 316L austenitic stainless steel was investigated and compared with its conventionally manufactured (CM) counterpart. Results show that the hardness increment in the SLM samples due to H charging is relatively smaller. Thermal desorption spectroscopy analysis suggests that the charged SLM alloy has not only a smaller H content but a lower apparent H diffusivity in comparison to the CM alloy. This was attributed to the ultrafine solidification cell structure in the SLM alloy. Through the low-load nanoindentation experiments and forward-scattered electron imaging analysis, statistical distributions of the hardness of the cell walls and interiors were assessed. The cell walls, consisting of high-density dislocations with segregated elements, were relatively insensitive to H charging than the cell interiors. These results are discussed in terms of the apparent H solubility and diffusivity in the SLM alloy.
[Display omitted] |
---|---|
ISSN: | 1359-6462 1872-8456 |
DOI: | 10.1016/j.scriptamat.2020.113718 |