Associations between multiple metals exposure and biological aging: Evidence from the Dongfeng-Tongji cohort

Aging is related to a progressive decline in physiological functions and is affected by environmental factors. Metal exposures are linked with many health effects, but have poorly understood associations with aging. In this study, a total of 33,916 participants from the Dongfeng-Tongji cohort were i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-02, Vol.861, p.160596, Article 160596
Hauptverfasser: Wang, Chenming, Hong, Shiru, Guan, Xin, Xiao, Yang, Fu, Ming, Meng, Hua, Feng, Yue, Zhou, Yuhan, Cao, Qiang, Yuan, Fangfang, Liu, Chenliang, Zhong, Guorong, You, Yingqian, Wu, Tianhao, Yang, Handong, Zhang, Xiaomin, He, Meian, Wu, Tangchun, Guo, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aging is related to a progressive decline in physiological functions and is affected by environmental factors. Metal exposures are linked with many health effects, but have poorly understood associations with aging. In this study, a total of 33,916 participants from the Dongfeng-Tongji cohort were included to establish biological age (BA) predictors by using recent advanced algorithms, Klemera and Doubal method (KDM) and Mahalanobis distance. Two biological aging indexes (BAIs), recorded as KDM-accel [the residual from regressing KDM-BA on chronological age] and physiological dysregulation (PD), were separately defined and tested on their associations with mortality by using Cox proportional hazard models. Among 3320 subjects with laboratory determinations of 23 metals in plasma, the individual and overall associations between these metals and BAIs were evaluated by using multiple-linear regression and weighted quantile sum (WQS) models. Both BAIs were prospectively associated with all-cause mortality among the whole participants [KDM-accel: HR(95%CI) = 1.23(1.18, 1.29); PD: HR(95%CI) = 1.37(1.31, 1.42)]. Each 1-unit increment in ln-transformed strontium and molybdenum were cross-sectionally associated with a separate 0.71- and 0.34-year increase in KDM-accel, and each 1 % increment in copper, rubidium, strontium, cobalt was cross-sectionally associated with a separate 0.10 %, 0.10 %, 0.09 %, 0.02 % increase in PD (all FDR < 0.05). The WQS models observed mixture effects of multi-metals on aging, with a 0.20-year increase in KDM-accel and a 0.04 % increase in PD for each quartile increase in ln-transformed concentrations of all metals [KDM-accel: β(95%CI) = 0.20(0.08, 0.32); PD: β(95%CI) = 0.04(0.02, 0.06)]. Our findings revealed that plasma strontium, molybdenum, copper, rubidium and cobalt were associated with accelerated aging. Multi-metals exposure showed mixture effects on the aging process, which highlights potential preventative interventions. [Display omitted] •Two biological age predictors were calculated in a large Chinese cohort.•Metal mixture from weighted quantile sum model associated with accelerated aging.•Plasma Sr, Mo, Cu, Rb and Co were associated with accelerated aging.•Plasma Cu was related to a higher mortality risk, which was partly mediated by aging.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2022.160596