Bioconcentration of imidazolium ionic liquids: In vivo evaluation in marine mussels Mytilus trossulus

Although imidazolium ionic liquids (ILs) are beginning to be used more widely in many industrial fields e.g., as reaction media, electrolytes, stationary phases in gas chromatography), there is still little information about their potential environmental fate. Among the uncertainties regarding the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-02, Vol.858, p.159388, Article 159388
Hauptverfasser: Maculewicz, Jakub, Dołżonek, Joanna, Sharma, Lilianna, Białk-Bielińska, Anna, Stepnowski, Piotr, Pazdro, Ksenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although imidazolium ionic liquids (ILs) are beginning to be used more widely in many industrial fields e.g., as reaction media, electrolytes, stationary phases in gas chromatography), there is still little information about their potential environmental fate. Among the uncertainties regarding the risks associated with these compounds, bioconcentration is one of the key issues, about which many doubts have been raised in recent years. While in vitro data suggest that permanently charged compounds can also bioconcentrate, conclusive evidence in the form of studies on organisms, at least for selected compounds, is needed. Therefore, the main objective of this work was to determine whether imidazolium cations of ILs, namely 1-methyl-3-octylimidazolium ([IM18]+) and 1-methyl-3-dodecylimidazolium ([IM1–12]+), can bioconcentrate in marine invertebrates tissues. During 21-day experiments, Mytilus trossulus mussels were exposed to these cations individually, at a concentration of 10 μg/L. In our study, it has been demonstrated for the first time during in vivo study, that long-chain imidazolium ionic liquids can bioconcentrate. The determined BCF value for [IM1–12]+ of 21,901 ± 3400 L/kg makes this compound to be considered highly bioaccumulative according to commonly accepted criteria. However, the obtained BCF for [IM18]+ (with the value below 100) suggests that this cation has little potential for bioconcentration. On the other hand, no salinity or anion influence on the bioconcentration of the tested cations was observed. Our tests also confirm that imidazolium ILs exhibit acute toxicity only at relatively high concentration levels, as LC50 reached 0.68 mg/L for [IM1–12][Br], and 11.66 mg/L for [IM18][C(CN)3]. This further confirms that the risks associated with the potential presence of these compounds in the environment should be attributed to their high persistence and potential bioconcentration, rather than acute toxicity. [Display omitted] •Imidazolium ionic liquids can bioconcentrate in marine invertebrates tissues.•[IM1–12]+ can be considered as highly bioaccumulative compound.•[IM18]+ has little potential for bioconcentration.•LC50 reached 0.68 mg/L for [IM1–12][Br], and 11.66 mg/L for [IM18][C(CN)3].
ISSN:0048-9697
DOI:10.1016/j.scitotenv.2022.159388