Influence of sedimentary organic matter sources on the distribution characteristics and preservation status of organic carbon, nitrogen, phosphorus, and biogenic silica in the Daya Bay, northern South China Sea
Surface sediment samples were collected from Daya Bay in October 2018, and analyzed for total organic carbon (OC), total nitrogen (TN) and their stable isotopes (δ13C and δ15N), total phosphorus (TP), biogenic silica (BSi), sediment textures and specific surface area (SSA). The primary objective was...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2021-08, Vol.783, p.146899, Article 146899 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface sediment samples were collected from Daya Bay in October 2018, and analyzed for total organic carbon (OC), total nitrogen (TN) and their stable isotopes (δ13C and δ15N), total phosphorus (TP), biogenic silica (BSi), sediment textures and specific surface area (SSA). The primary objective was to evaluate the influence of mariculture/aquaculture on the distribution characteristics of organic matter (OM), and preservation status of OC, TN, TP, and BSi in sediments. The average δ13C and δ15N values, and OC/TN ratios were −21.27‰, 6.74‰, and 8.90, respectively. Monte Carlo simulation results revealed that mariculture/aquaculture biodeposits accounted for >40% of the buried OM at sites where the breeding rafts and cages are located, whereas marine OM increased gradually to the open sea. Terrestrial OM was generally low accounting for 17% by average. The contents and distribution characteristics of biogenic elements were more influenced by mariculture/aquaculture and primary productivity than sediment textures. Lower OC/SSA (0.3–1.2 mg OC/m2), TN/SSA (~0.05–0.18 mg TN/m2), and TP/SSA (0.02–0.04 mg TP/m2) loadings indicated that increased sequestration of labile OM in a coastal bay could contribute to significant degradation of recalcitrant OM in sediments with significant loss of P relative to OC. Nitrogen contamination in surface sediments was due to increased injection of aquaculture biodeposits, and may pose a detrimental effect on the ecological sustainability of the bay. Higher BSi/SSA loadings (0.9–1.7 mg BSi/m2) revealed that BSi was more preserved, and that BSi-based proxy could be used for paleo-productivity studies. However, such preservation may induce adverse dissolved silicate limitation in a bay perturbed by eutrophication. Fine-grained sediments (clay and silt) accounted for >77% of the sediment texture types with higher SSA, and while controlling the contents of biogenic elements under given depositional conditions were not the main determining factors of OC, TN, TP, and BSi preservation.
[Display omitted]
•Marine culture biodeposits constituted 5–55% of sedimentary OM in the Daya Bay•Sedimentary OM influenced the distribution characteristics of biogenic elements•N contamination in sediments was more related with fish aquaculture activities•OC has undergone significant remineralization, and TP has a high turnover rate•High BSi production and loadings are controlled by complex biogeochemical processes |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.146899 |