Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach

The principal objective of this study is to generate mathematical regression equations that facilitate the estimation of the extent to which Eichhornia crassipes (C. Mart.) Solms, water hyacinth, absorbs heavy metals (HMs) into four plant organs (laminae, petioles, roots, and stolons). This study co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-08, Vol.782, p.146887, Article 146887
Hauptverfasser: Eid, Ebrahem M., Shaltout, Kamal H., Almuqrin, Aljawhara H., Aloraini, Dalal A., Khedher, Khaled M., Taher, Mostafa A., Alfarhan, Ahmed H., Picó, Yolanda, Barcelo, Damia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principal objective of this study is to generate mathematical regression equations that facilitate the estimation of the extent to which Eichhornia crassipes (C. Mart.) Solms, water hyacinth, absorbs heavy metals (HMs) into four plant organs (laminae, petioles, roots, and stolons). This study considers the absorption of nine HMs (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), and the E. crassipes evaluated in this study were located in three irrigation canals in the North Nile Delta in Egypt, with sampling being conducted in both monospecific and homogenous E. crassipes. Samples of both E. crassipes and water were collected on a monthly basis during one growing season. Analysis of the water samples showed that the HM concentrations ranged from 1.1 μg/l for Cd to 2079.8 μg/l for Fe. All HMs were more concentrated in the E. crassipes roots than in any other organ. Typically, there was a significant correlation between the HM levels in the water and the HM levels in the E. crassipes organs. E. crassipes was documented by a bioconcentration factor > 1.0 for all HMs. The translocation factor in this study was 1.0 for all HMs.•The translocation of HMs by E. crassipes was below 1 for all examined HMs.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.146887