Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes

In this study, the degradation of ciprofloxacin (CIP) in wastewater was investigated using UV-based sulfate radical advanced oxidation processes (SR-AOP) and UV-based advanced reduction processes (ARP). More specifically, a comparison of the UV-based persulfate advanced oxidation process (the UV/PS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-04, Vol.764, p.144510, Article 144510
Hauptverfasser: Milh, Hannah, Yu, Xingyue, Cabooter, Deirdre, Dewil, Raf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the degradation of ciprofloxacin (CIP) in wastewater was investigated using UV-based sulfate radical advanced oxidation processes (SR-AOP) and UV-based advanced reduction processes (ARP). More specifically, a comparison of the UV-based persulfate advanced oxidation process (the UV/PS process) and the UV-based sulfite advanced reduction process (the UV/sulfite process) was made. Considering the UV-based SR-AOPs, the UV/PS process was much more efficient than the UV-based peroxymonosulfate advanced oxidation process (the UV/PMS process), with pseudo first order reaction rate constants (kobs) of 0.752 and 0.145 min−1, respectively. For the UV-based ARPs, the UV/sulfite process was the most efficient, compared to the UV/sulfide and the UV/dithionite process (kobs of 0.269, 0.0157 and 0.0329 min−1, respectively). The optimal process parameters for both the UV/PS and the UV/sulfite process were determined and the contribution of the produced reactive species were identified. For the UV/PS process, maximal CIP degradation was found at pH 8, and both OH and SO4− were responsible for CIP degradation. For the UV/sulfite process, H and eaq− were responsible for CIP degradation, with eaq− being the predominant radical at pH 8.5. Although CIP degradation was much faster for the UV/PS process, the UV/sulfite process was determined to be much more efficient in the defluorination of CIP. [Display omitted] •Comparison of SR-AOPs and ARPs for the degradation of ciprofloxacin•In-depth assessment of influential parameters and produced reactive species•Insight in the reaction mechanisms by studying the ciprofloxacin defluorination
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.144510