Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome

Bees can be severely affected by various plant protection products (PPP). Among these, neonicotinoid insecticides are of concern as they have been shown to be responsible for extensive honeybee colonies death when released into the environment. Also, sublethal neonicotinoid doses contaminating singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-03, Vol.762, p.144116, Article 144116
Hauptverfasser: Alberoni, D., Favaro, R., Baffoni, L., Angeli, S., Di Gioia, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bees can be severely affected by various plant protection products (PPP). Among these, neonicotinoid insecticides are of concern as they have been shown to be responsible for extensive honeybee colonies death when released into the environment. Also, sublethal neonicotinoid doses contaminating single honeybees and their colonies (e.g. through contaminated pollen) are responsible for honeybees physiological alterations with probable implication also on microbiome functionality. Honeybees show symbiotic interactions with specific gut bacteria that can enhance the adult host performances. Among the known mechanisms, the modulation of the immune system, the degradation of recalcitrant secondary plant metabolites, pollen digestion, and hormonal signaling, are the most important functional benefits for the host honeybee. To date, few research efforts have aimed at revealing the impact of PPP on the gut microbial community of managed and wild honeybees. The majority of the existing literature relays on cage or semifield tests of short duration for research investigating neonicotinoids-gut microbiome interactions. This research wanted to unravel the impact of two neonicotinoids (i.e. imidacloprid and thiacloprid) in natural field conditions up to 5 weeks of exposure. A long-term impact of neonicotinoids on gut microbial community of honeybees was observed. The alterations affected several microbial genera and species such as Frischella spp., lactobacilli and bifidobacteria, whose shifting is implicated in intestinal dysbiosis. Long-term impact leading to dysbiosis was detected in case of exposure to imidacloprid, whereas thiacloprid exposure stimulated temporary dysbiosis. Moreover, the microbial diversity was significantly reduced in neonicotinoid-treated groups. Overall, the reported results support a compromised functionality of the gut microbial community, that might reflect a lower efficiency in the ecosystemic functionality of honeybees. [Display omitted] •Large presence of Plant Protection Products in the agro-ecosystem is an issue for microbes.•Short-term studies on bee gut microbiome impairment were inconclusive.•Hives were treated with pesticides following their condition up to 5 weeks.•The effect of imidacloprid on the microbiota of bees is evident in the long term.•Decrease of important taxa linked with nutrition and host defense impoverishment.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.144116