Direct comparison of bacterial communities in soils contaminated with different levels of radioactive cesium from the first Fukushima nuclear power plant accident
The Great East Japan Earthquake caused a serious accident at the first Fukushima nuclear power plant (NPP), which in turn released a large amount of radionuclides. Little attention has been paid to in-situ soil microorganisms exposed to radioactive contamination by the actual NPP accident. We herein...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2021-02, Vol.756, p.143844, Article 143844 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Great East Japan Earthquake caused a serious accident at the first Fukushima nuclear power plant (NPP), which in turn released a large amount of radionuclides. Little attention has been paid to in-situ soil microorganisms exposed to radioactive contamination by the actual NPP accident. We herein investigated bacterial communities in the radioactive cesium (Cs)-contaminated and non-contaminated soils by high-throughput sequencing. The uppermost and ectorhizosphere soil samples were collected from the base of mugwort grown in the same soil type with the same soil-use history in order to compare the bacterial communities at geographically separated areas. The concentrations of radioactive Cs in the soils ranged from 10 to 563,000 Bq 137Cs/kg dry soil, with the highest concentration being detected at 1 km from the NPP. Alpha-diversity indices, i.e., Chao1, Shannon and Simpson reciprocal, of the sequence data showed the lower bacterial diversity in the most highly Cs-contaminated soil. Principal coordinate analysis with principle components 1 and 3 based on unweighted UniFrac distances indicated the significant difference in bacterial communities of the most contaminated area from those of the other areas. Operational taxonomic unit-based assay revealed higher abundance of the radio-resistant Geodermatophilus bullaregiensis relative in the most contaminated soil. Thus, it was strongly suggested that the radioactive accident facilitated the growth and/or survival of radio-resistant bacteria in the Cs-contaminated soils. The results of this study show that information on the soil type, vegetation and soil-use history enhances the direct comparison of geographically distant soil bacterial communities exposed to different levels of radioactive contamination.
[Display omitted]
•Soil bacterial communities exposed to radioactive Cs were compared.•Radionuclides from the NPP accident hardly changed the major community constituents.•Higher relative abundance of some species in highly Cs-contaminated soil was found.•Same soil type, vegetation and use history help to compare the bacterial communities. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.143844 |