Typical organic pollutant-protein interactions studies through spectroscopy, molecular docking and crystallography: A review

With the development of industry and human society, more attention was paid for the toxic effects of organic pollutants that are closely related to human daily life. Previous studies mainly focused on the dose-response relationship and cytotoxic effects of pollutants to organisms,while little resear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-04, Vol.763, p.142959, Article 142959
Hauptverfasser: Tu, Mengchen, Zheng, Xin, Liu, Peiyuan, Wang, Shuping, Yan, Zhenguang, Sun, Qianhang, Liu, Xinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of industry and human society, more attention was paid for the toxic effects of organic pollutants that are closely related to human daily life. Previous studies mainly focused on the dose-response relationship and cytotoxic effects of pollutants to organisms,while little research focused on pollutant-protein interactions at molecular level. However, the binding of organic pollutants to biomolecules, especially proteins like transporters, membrane receptor and nuclear receptors, is often the first step of toxic effects. It can make a series of endocrine disrupting and genotoxic effects through cell signaling pathway by binding specific target proteins including serum albumin, thyroid transporter, estrogen receptor, androgen receptor, and aryl hydrocarbon receptor. Thus, the research of interactions between organic pollutants and proteins is helpful and necessary to understand the distribution, metabolism and toxicity mechanism of compounds in organisms at the molecular level. This paper reviewed the latest research progress of the interaction types of persistent organic pollutants (POPs), emerging pollutants and some other pollutants with targeted proteins. In addition, we summarized several main experimental techniques for studying pollutant-protein interactions including ultraviolet/visible absorption spectrometry (UV–vis), fluorescence, infrared spectrometry, circular dichroic spectra (CD), molecular docking and X-ray crystallography. This review contributes to the molecular mechanism of the interaction between organic pollutants and biomolecules. [Display omitted] •The main detection methods of pollutant-protein study were introduced.•Studies on typical organic pollutant-protein interaction are presented.•Crystallography studies can directly provide structural changes of proteins.•Research direction of the interaction between pollutants and proteins are prospected.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.142959