Nonlinear partition of nonionic organic compounds into humus-like substance humificated from lignin

Nonlinear sorption of nonionic organic compounds (NOCs) by soil organic matter (SOM) is a significant behaviour that affecting their distribution, transport and fate in the environment. Sorption of typical NOCs, including phenols, anilines, nitrobenzenes and polycyclic aromatic hydrocarbons (PAHs) b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-04, Vol.764, p.142887, Article 142887
Hauptverfasser: Ren, Liufen, Lin, Daohui, Yang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonlinear sorption of nonionic organic compounds (NOCs) by soil organic matter (SOM) is a significant behaviour that affecting their distribution, transport and fate in the environment. Sorption of typical NOCs, including phenols, anilines, nitrobenzenes and polycyclic aromatic hydrocarbons (PAHs) by Lig48, a humus-like substance humificated from lignin (the principal component of plant precursors of SOM), is nonlinear and without desorption hysteresis, and interpreted by nonlinear partition mechanism in this study. The positively linear relationship between sorption capacity and water solubility of NOCs is a distinguish characteristic for their nonlinear partition into Lig48. Moreover, the nonlinear partition capacity of NOCs is mainly dependent on the aromaticity of humus-like substances with a positively linear relationship, while the nonlinear partition affinity is mainly dependent on the polarity of humus-like substances with a negatively linear relationship. Competition between phenols, anilines, nitrobenzenes and PAHs was observed for their nonlinear partition into Lig48. In addition to van der Waals force, specific interactions, i.e., hydrogen-bonding and π-π interactions are responsible for the nonlinear partitioning of NOCs into humus-like substances including Lig48. These novel observations are helpful for understanding the nonlinear sorption of NOCs by SOM and elucidating the migration and transport of NOCs in the environment. [Display omitted] •Nonlinear partition capturing the nonlinear sorption of NOCs into humus-like substances•Positively linear relationship existed between nonlinear partition capacity and water solubility of NOCs•Nonlinear partition capacity of NOCs depending on the aromaticity of humus-like substances•Nonlinear partition affinity of NOCs depending on the polarity of humus-like substances•Hydrogen-bonding interaction and π-π interaction responsible for nonlinear partition
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.142887