Residential urban stormwater runoff: A comprehensive profile of microbiome and antibiotic resistance
Non-point stormwater runoff is a major contamination source of receiving waterbodies. Heightened incidence of waterborne disease outbreaks related to recreational use and source water contamination is associated with extreme rainfall events. Such extreme events are predicted to increase in some regi...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2020-06, Vol.723, p.138033, Article 138033 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-point stormwater runoff is a major contamination source of receiving waterbodies. Heightened incidence of waterborne disease outbreaks related to recreational use and source water contamination is associated with extreme rainfall events. Such extreme events are predicted to increase in some regions due to climate change. Consequently, municipal separate storm sewer systems (MS4s) conveying pathogens to receiving waters are a growing public health concern. In addition, the spread of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria in various environmental matrices, including urban runoff, is an emerging threat. The resistome and microbiota profile of MS4 discharges has yet to be fully characterized. To address this knowledge gap, we first analyzed the relationship between rainfall depth and intensity and E. coli densities (fecal indicator) in stormwater from four MS4 outflows in Columbus, Ohio, USA during the spring and summer of 2017. Microbial source tracking (MST) was conducted to examine major fecal contamination sources in the study sewersheds. A subset of samples was analyzed for microbial and resistome profiles using a metagenomic approach. The results showed a significant positive relationship between outflow E. coli density and rainfall intensity. MST results indicate prevalent fecal contamination from ruminant populations in the study sites (91% positive among the samples tested). Protobacteria and Actinobacteria were two dominant bacteria at a phylum level. A diverse array of ARGs and potentially pathogenic bacteria (e.g. Salmonella enterica Typhimurium), fungi (e.g. Scedosporium apiospermum), and protists (e.g. Acanthamoeba palestinensis) were found in urban stormwater outflows that discharge into adjacent streams. The most prevalent ARGs among samples were β-lactam resistance genes and the most predominant virulence genes within bacterial community were related with Staphylococcus aureus. A comprehensive contamination profile indicates a need for sustainable strategies to manage urban stormwater runoff amid increasingly intense rainfall events to protect public and environmental health.
[Display omitted]
•Extreme precipitation contributed to high concentrations of E. coli in stormwater.•Stormwater-derived microbiome and resistome was profiled with metagenomics.•Among antibiotic resistance (AR) genes, β-lactam resistance was ubiquitously detected.•Ruminant (deer)- and human-associate fecal bacteria contamination was domin |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.138033 |