One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation
Zero Valent Iron (ZVI) is an important and widely employed environmental remediation material in brownfield. However, the instability of fine size ZVI and the strong aggregation of nanoscale-ZVI limited its further application. To overcome these drawbacks, ZVI-Sludge Derived Biochar (SDBC) was prepa...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2020-04, Vol.714, p.136728-136728, Article 136728 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zero Valent Iron (ZVI) is an important and widely employed environmental remediation material in brownfield. However, the instability of fine size ZVI and the strong aggregation of nanoscale-ZVI limited its further application. To overcome these drawbacks, ZVI-Sludge Derived Biochar (SDBC) was prepared without external iron source through the one-step process of pyrolysis. The characterization results including SEM-EDX, XRD and XPS confirmed the successful loading of Fe0 on the surface of SDBC. The activation efficiency of persulfate (PS) in in-situ chemical oxidation system was studied. The environmental remediation properties of ZVI-SDBC/PS system were evaluated employing acid orange (AO7) and landfill leachate as target pollutants. ZVI-SDBC/PS system was highly efficient as that 99.0% of AO7 (0.06 mM) was removed by 0.925 mM of PS and 0.5 g L−1 of ZVI-SDBC. In addition, total organic carbon (TOC) and ammonia in leachate were removed by 62.8% and 99.8%, respectively. The removal efficiency of AO7 was nearly independent on initial pH as that 89.1% and 99.1% of AO7 were removed at pH of 9.08 and 2.13 respectively. Hydroxyl radicals dominated in the reaction under neutral and alkaline conditions with contribution rates of 71.9% and 86.1% respectively. Noticeably, not only free radicals but also non-radical species such as singlet oxygen contributed to the degradation, which favored the pH-independent performance. The reuse performance of ZVI-SDBC was higher than these of previously reported ZVI-based catalysts as that the first-order rate constant of AO7 removal decreased not much from 0.0718 to 0.0502 min−1 after the three-cycle reuse assays. In summary, ZVI-SDBC showed advantages such as the facile and chemical-saving preparation method, reliable disposal of municipal sewage sludge, remarkable efficiency and stability. These advantages proved ZVI-SDBC/PS system as an effective strategy of controlling waste by waste, and implicated its potential application in full-scale for environmental remediation in brownfield.
[Display omitted]
•Zero valent iron-sludge derived biochar was prepared by one-step with no external iron source.•Zero valent iron-sludge derived biochar/persulfate system was highly efficient on contaminants removal.•Both model compound AO7 and landfill leachate were tested.•The efficiency was pH-independent and the reuse performance was satisfactory. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.136728 |