Bioavailability of clay-adsorbed dioxin to Sphingomonas wittichii RW1 and its associated genome-wide shifts in gene expression

Polychlorinated dibenzo-p-dioxins and dibenzofurans are a group of chemically-related pollutants categorically known as dioxins. Some of their chlorinated congeners are among the most hazardous pollutants that persist in the environment. This persistence is due in part to the limited number of bacte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-04, Vol.712, p.135525, Article 135525
Hauptverfasser: Chai, Benli, Tsoi, Tamara, Sallach, J. Brett, Liu, Cun, Landgraf, Jeff, Bezdek, Mark, Zylstra, Gerben, Li, Hui, Johnston, Cliff T., Teppen, Brian J., Cole, James R., Boyd, Stephen A., Tiedje, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polychlorinated dibenzo-p-dioxins and dibenzofurans are a group of chemically-related pollutants categorically known as dioxins. Some of their chlorinated congeners are among the most hazardous pollutants that persist in the environment. This persistence is due in part to the limited number of bacteria capable of metabolizing these compounds, but also to their limited bioavailability in soil. We used Sphingomonas wittichii strain RW1 (RW1), one of the few strains able to grow on dioxin, to characterize its ability to respond to and degrade clay-bound dioxin. We found that RW1 grew on and completely degraded dibenzo-p-dioxin (DD) intercalated into the smectite clay saponite (SAP). To characterize the effects of DD sorption on RW1 gene expression, we compared transcriptomes of RW1 grown with either free crystalline DD or DD intercalated clay, i.e. sandwiched between the clay interlayers (DDSAP). Free crystalline DD appeared to cause greater expression of toxicity and stress related functions. Genes coding for heat shock proteins, chaperones, as well as genes involved in DNA repair, and efflux were up-regulated during growth on crystalline dioxin compared to growth on intercalated dioxin. In contrast, growth on intercalated dioxin up-regulated genes that might be important in recognition and uptake mechanisms, as well as surface interaction/attachment/biofilm formation such as extracellular solute-binding protein and LuxR. These differences in gene expression may reflect the underlying adaptive mechanisms by which RW1 cells sense and deploy pathways to access dioxin intercalated into clay. These data show that intercalated DD remains bioavailable to the degrading bacterium with implications for bioremediation alternatives. [Display omitted] •Sphingomonas wittichii RW1 was able to access and degrade DD intercalated into clay.•RW1 has similar growth rates on sorbed DD and DD crystals.•Exposure to intercalated DD reduced toxicity and stress associated gene expression.•Recognition, uptake, and surface interaction genes upregulated by intercalated DD
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.135525