A quantitative risk assessment method for synthetic biology products in the environment
The need to prevent possible adverse environmental health impacts resulting from synthetic biology (SynBio) products is widely acknowledged in both the SynBio risk literature and the global regulatory community. To-date, however, discussions of potential risks of SynBio products have been largely sp...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-12, Vol.696, p.133940, Article 133940 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The need to prevent possible adverse environmental health impacts resulting from synthetic biology (SynBio) products is widely acknowledged in both the SynBio risk literature and the global regulatory community. To-date, however, discussions of potential risks of SynBio products have been largely speculative, and the limited attempts to characterize the risks of SynBio products have been non-uniform and entirely qualitative. As the SynBio discipline continues to accelerate and bring forth novel, highly-engineered life forms, a standardized risk assessment framework will become critical for ensuring that the environmental risks of these products are characterized in a consistent, reliable, and objective manner that incorporates all SynBio-unique risk factors. In their current forms, established risk assessment frameworks – including those that address traditional genetically modified organisms – fall short of the features required of this standard framework. To address this gap, we propose the Quantitative Risk Assessment Method for Synthetic Biology Products (QRA-SynBio) – an incremental build on established risk assessment methodologies that supplements traditional paradigms with the SynBio risk factors that are currently absent, and necessitates quantitative analysis for more transparent and objective risk characterizations. We demonstrate through a hypothetical case study that the proposed framework facilitates defensible quantification of the environmental risks of SynBio products in both foreseeable and hypothetical use scenarios. Additionally, we show how the quantitative nature of the proposed method can promote increased experimental investigation into the true likelihood of hazard and exposure parameters and highlight the most sensitive parameters where uncertainty should be reduced, ultimately leading to more targeted SynBio risk research and yielding more precise characterizations of risk.
[Display omitted]
•Risk factors specific to synthetic biology are incorporated; missing in other methods.•Quantification of risk is emphasized and facilitated by this method.•All forms of synthetic biology products are accommodated as potential hazards.•All environmental receptors and health endpoints are accommodated in this method.•This method highlights priority areas to focus future synthetic biology risk research. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.133940 |