The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-11, Vol.693, p.133626, Article 133626
Hauptverfasser: Xu, Chen, Lin, Peng, Zhang, Saijin, Sun, Luni, Xing, Wei, Schwehr, Kathleen A., Chin, Wei-Chun, Wade, Terry L., Knap, Anthony H., Hatcher, Patrick G., Yard, Alexandra, Jiang, Christine, Quigg, Antonietta, Santschi, Peter H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4–5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates. [Display omitted] •Higher oil concentration, higher nutrient, and biomass all enhanced EPS production.•Dispersant induced production of EPS with higher protein to carbohydrate ratio (P/C).•P/C ratio is a key factor regulating oil incorporation into sinking MOS.•Dispersants decrease the sinking velocities of petro- and non-petro-carbon.•Dispersants lead to a low petro-carbon sedimentation efficiency in all ocean regions
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.133626