Formal verification of timely knowledge propagation in airborne networks
Ensuring timely coordination between autonomous aircraft is a challenging problem in decentralized air traffic management (ATM) applications for urban air mobility (UAM) scenarios. This paper presents an approach for formally guaranteeing timely progress in a Two-Phase Acknowledge distributed knowle...
Gespeichert in:
Veröffentlicht in: | Science of computer programming 2025-01, Vol.239, p.103184, Article 103184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ensuring timely coordination between autonomous aircraft is a challenging problem in decentralized air traffic management (ATM) applications for urban air mobility (UAM) scenarios. This paper presents an approach for formally guaranteeing timely progress in a Two-Phase Acknowledge distributed knowledge propagation protocol by probabilistically modeling the delays using the theory of the Multicopy Two-Hop Relay protocol and the M/M/1 queue system. The guarantee states a probabilistic upper bound to the time for progress as a function of the probabilities of the total transmission and processing delays following two specific distributions. The proof uses a general library of formal theories, that can be used for the rigorous mechanical verification of autonomous aircraft coordination protocols using the Athena proof checker and assistant. |
---|---|
ISSN: | 0167-6423 |
DOI: | 10.1016/j.scico.2024.103184 |