Samarium oxide nanoparticle-modified gold electrodes for enhanced Voltammetric sensing of hydrazine and p-Nitrophenol

Samarium oxide (Sm2O3), such as electrochemical sensors, is a promising material in various application prospects and industries. Additionally, Sm2O3 leverages electron transport capabilities, high electrical conductivity, and thermal stability to develop an effective material in electrode modificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensing and Bio-Sensing Research 2025-02, Vol.47, p.100745, Article 100745
Hauptverfasser: Wyantuti, Santhy, Ferdiana, Nur Azizah, Zahra, Sahlaa Alifah, Fauzia, Retna Putri, Irkham, Sumeru, Husain Akbar, Jia, Qi, Kurnia, Dikdik, Bahti, Husein H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Samarium oxide (Sm2O3), such as electrochemical sensors, is a promising material in various application prospects and industries. Additionally, Sm2O3 leverages electron transport capabilities, high electrical conductivity, and thermal stability to develop an effective material in electrode modification for detecting hazardous pollutants. Hydrazine and p-nitrophenol are compounds commonly used in producing insecticides, pesticides, pharmaceuticals, and the chemical industry. However, these compounds can become hazardous environmental pollutants and pose serious health risks to humans. Therefore, this research aims to examine the impact of modifying gold electrode (GE) with Sm2O3 nanoparticles, characterizing the electrochemical results, and assessing sensor performance through the use of the GE/Sm2O3 NP electrode. In this context, the purpose is to detect hydrazine and p-nitrophenol through voltammetry, with analytical parameters including recovery, repeatability, detection limit, quantification limit, and linear range. The results show that the synthesis of Sm2O3 nanoparticles and the performance of the sensor and analytical parameters of GE/Sm2O3 NP are carried out in detecting hydrazine and p-nitrophenol using the Cyclic Voltammetry (CV) method. Furthermore, the significant increase in the current response validates the improvement of GE conductivity as an electron transporter. The sensor performance has been studied, and analytical parameters have been determined. For hydrazine and p-nitrophenol, the values are recovery of 98.74 % and 99.01 %, repeatability of 99.42 % and 98.45 %, limit of detection (LoD) of 0.4684 μM and 0.50332 μM, limit of quantification (LoQ) of 1.4194 μM and 1.5252 μM, and linear concentration range for both analytes from 0.1 μM to 7 μM.
ISSN:2214-1804
2214-1804
DOI:10.1016/j.sbsr.2025.100745