Spectral investigation on single molecular optoelectronics of ladder phenylenes
[Display omitted] •The fully conjugated nature of ladder phenylenes (LPs) are of some unique properties.•LPs have potential applications in the fabrication of molecular electronics devices.•Our results reveal optoelectronic properties apply density function theory and non-equilibrium green's fu...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2022-10, Vol.278, p.121283, Article 121283 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•The fully conjugated nature of ladder phenylenes (LPs) are of some unique properties.•LPs have potential applications in the fabrication of molecular electronics devices.•Our results reveal optoelectronic properties apply density function theory and non-equilibrium green's function theory.•Our research provides theoretical guidance for the regulation of light-harvesting regions based on LPs structures,•Our research provides theoretical support for the design of nano-scale optoelectronic devices.
Atomic chains and organic conjugated molecules are of great important research value in molecular optoelectronics, due to their special optoelectronic properties. The fully conjugated nature of ladder phenylenes (LPs) provide some unique properties that have potential applications in the fabrication of molecular electronics devices. Our results reveal optoelectronic properties apply density function theory and non-equilibrium green's function theory, including unit-dependent light absorption, Raman scattering, phonon energy band structure, the chemical potential dependent density of states, electrical conductivity, I-V curve, transmission spectrum, etc. Our research provides theoretical guidance for the regulation of light-harvesting regions based on LPs structures, and theoretical support for the design of nano-scale optoelectronic devices. |
---|---|
ISSN: | 1386-1425 1873-3557 |
DOI: | 10.1016/j.saa.2022.121283 |